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In 1965 Sullivan made many measurements of concentration in dye plumes in the 
surface layer of Lake Huron with the primary purpose of estimating the distance- 
neighbour function (Sullivan 1965, 1971). This paper presents the results of a recent 
analysis of the concentration fluctuations in these experiments for, despite their great 
practical and theoretical importance, there are very few published reports of such 
measurements from natural environments. One reason for this apparent neglect has 
undoubtedly been the anticipated high noise level, and the present results confirm this 
expectation. The experimental analysis uses the framework of relative diffusion since 
this has great advantages compared with that of absolute diffusion. Despite the noise, 
the results are consistent, to the degree of spatial resolution attained, with the self- 
similar structure anticipated for relative, but not absolute, diffusion. Further interest- 
ing features of the results are that changes in the form of the statistical properties 
across the plume indicate an unexpectedly strong influence of the central regions, and 
that certain statistical properties have much less noisy profiles than that of the mean 
square fluctuations. The influence of molecular diffusion is shown to be strong. Inter- 
pretationof the results is based partly on the extension of the theory recently developed 
by Chatwin & Sullivan (1979a) for a cloud, although the limited spatial resolution 
attained did not allow direct critical examination of this work. 

1. Introduction 
In most practical cases of turbulent diffusion, like the spillage of a toxic chemical or 

the release of an obnoxious gas, knowledge of the distribution of the ensemble mean 
concentration C(x, t )  is not adequate to answer most of the important questions. At 
the very least, knowledge of the distribution of>(x, t ) ,  where c(x,  t )  is the concentra- 
tion fluctuation [that is the difference between r(x, t ) ,  the actual concentration in one 
realization, and C(x, t ) ] ,  is desirable, since it is the variance at  position x and time t of 
the probability density function of r. This remark is reinforced by observations which 
suggest that @)'is invariably at least of the same order as C (Murthy & Csanady 1971). 

However, relatively few observations of 2, or any other statistical properties of c, 
have been reported. Most of these have been taken in the laboratory and analysed 
within the framework of absolute diffusion, that is with x measured relative to a fixed 
origin (e.g. Uberoi & Corrsin 1953; Crum & Hanratty 1965). Interesting and important 
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though such experiments are, it  is, for several reasons, difficult to infer from them valid 
or useful predictions for the Iarge-scale dispersion phenomena normally encountered 
in the atmosphere, the oceans and similar environments. Primarily this is because the 
most substantial contribution to the dispersion of a cloud or plume in absolute diffusion 
eomes from the energy-containing components of the turbulent velocity field, and the 
structure of these is strongly dependent upon the large-scale geometry of the flow field. 
Such dependence will inevitably affect the statistical properties associated with the 
cloud or plume, such as its mean rate of growth or the magnitudes of quantities like 
C(x, t )  and2(x,  t )  [although not, apparently, the almost universally observed Gaussian 
form of C(X, t )  !I. A related practical point is that it  is frequently impossible in natural 
environments to measure reliably any statistical properties which depend strongly 
on these large-scale components. This is brought out very clearly in a discussion of 
experiments carried out in 1962 in Lake Huron by Csanady (1963), and also by many 
other authors. 

Normally in natural environments the length scale of the energy-containing corn- 
ponents of the velocity field is much greater than the instantaneous width of the cloud 
or plume, so that these components affect only the displacement as a body of the cloud 
or plume as a whole and not its spreading about its instantaneous centre. Therefore, 
provided x is measured relative to the instantaneous centre of mass of a cloud, or the 
instantaneous centre-line of a plume, the statistical properties of r(x, t )  are then 
unaffected by the energy-containing components. The experiments reported in this 
paper were analysed with x measured in this way, that is in the framework of relative 
diffusion (Batchelor 1 9 5 2 ~ ;  Csanady 1973; Monin & Yaglom 1975). Apart from the 
elimination of effects of the energy-containing components, relative diffusion has two 
other important advantages compared with absolute diffusion. First of all it avoids 
unnecessary smearing of the statistical properties of r(x, t ) .  Also if the mean width of 
the cloud or plume lies well within the inertial subrange of Kolmogoroff (Monin & 
Yaglom 1975,s 21)) many statistical properties of r(x, t )  will, when suitably scaled, be 
universal (i.e. independent of the Reynolds number and the flow geometry). These 
are described in detail in $24 of Monin & Yaglom (1975). Large inertial subranges exist 
however only in the very high Reynolds number flows encountered in natural environ- 
ments. 

Experiments on dye plumes in Lake Huron were made by Sullivan in 1965 with the 
purpose of measuring C(x, t )  and the distance-neighbour function (Sullivan 1965, 
1971, 1975). The Reynolds number was high enough in each case for a substantial 
inertial subrange to exist. In  view of this, and also because the measurements were 
made at  more downstream locations than in the very few other similar experiments 
reported [nine compared with, for example, the four of Murthy & Csanady (1971)], the 
profiles of the concentration fluctuations have recently been extracted from the 
experimental records and are presented here. Although the profiles are inevitably 
noisy they do suggest strongly that, to the degree of spatial resolution attained,? 
develops in a self-similar way. It is also shown that these noisy profiles yield much 
more stable profiles of some other statistical properties, whose consideration and intar- 
pretation is a novel feature of this paper. 

The experimental results are discussed in terms of a new description of the statistical 
structure of a steady plume, analogous to that presented for a cloud by Chatwin & 



Concentration Jluctuations in turbulent diffusion 85 

Sullivan (1979a). However, because of the limited spatial resolution attained in the 
experiments, much of this description could not be directly examined. 

2. Experimental results 
In each experiment a dye plume was formed in the well-mixed surface layer of Lake 

Huron by the injection of a neutrally buoyant solution of Rhodamine B dye at a 
constant rate. A small boat carrying fluorometric equipment was used to traverse the 
plume repeatedly in a direction normal to the instantaneous plume axis. During each 
experiment the flow conditions were almost steady, and the angle between the instan- 
taneous plume axis and the mean current was small, certainly never greater than 10". 
Vertical diffusion of the dye was limited by the presence of the thermocline SO that only 
the spreading of the dye in the horizontal was considered to be important, and the 
measurements were analysed on this basis. Up to 25 crossings were made a t  each of nine 
locations (one or two for each of the five plumes). For each location measurements of 
concentration were made 1 m below the surface; also at three of these locations meas- 
urements were made simultaneously at  2 m below the surface. Thus measurements 
were made at  a total of 12 stations. 

The current speed and thermocline depth varied from experiment to experiment, 
but in all cases the Reynolds number based on these parameters was greater than los. 
The value of 8, the mean rate of dissipation of energy per unit mass, was estimated 
very approximately by Sullivan (1971) to have an average over the experiments of 
2.1 x lo-' m2r3, using methods summarized on p. 566 of Monin & Yaglom (1975). 
Using values of 1O-Sm2s-1 for v (the kinematic viscosity) and 10-9m2s-1 for K (the 
molecular diffusivity), the viscous cut-off length (v3/e)* and the conduction cut-off 
length (K~v/c )*  were then estimated to be 1.5 x m respectively. 
At the sampling stations, the plume widths varied from 16m to 80 m, while the 
diameter of the tube injecting the dye was 6.35 x 10-2m. The overall resolution of 
the fluorometric equipment and the digitization procedure used in analysing the data 
was estimated to be to a length scale of about 4 m. 

Further details of the flow conditions and experimental equipment are given in 
Sullivan (1965, 1971). 

Denote by x and y horizontal distances measured respectively along the instan- 
taneous plume axis from the source, and normal to the axis. A t  each station a number 
n of crossings were made and, for each crossing, a digitized record of the distribution of 
concentration ri ( 1  < i < n) was obtained as a function of y. Note that n varied from 
station to station. Each such record was normalized to have unit integral and, sinm 
relative diffusion was being studied, the origin of y was, for each crossing, chosen to be 
the centre of mass. Thus, for 1 6 i 6 n, 

m and 4.7 x 

and yri(x, y)dy = 0. 
-m -m 

At each of the 12 stations, the ensemble mean concentration C(x, y) and the mean 
width L(x) were determined by 

(2.2) 
n 

i=l 
C(X, Y) = n-l x F A X ,  Y) 
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FIGURE 1. The variation of C with L. The straight line is the curve C = 0.436L-1'0s and the 
error bar shows, for one station, the magnitude of the root-mean-square variation of L about its 
mean. (One unit of L is equal to  3.36 m.) 

1 2 3 
Y 

4 

N 

FIGURE 2. The variation of 52, /c2 with Y for each of the 12 stations. 
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Station 

1-1 
1-2* 
2-1 * 
2-2 
3-1 U* 
3-1L 
3-2u 
3-2L 
4-1 u* 
4-1 L* 
4-2 * 
5-1 

Numbers f 
of r A -l 

25 0.92 2.24 10.2 2.70 13.3 3.04 
8 1.10 4.60 37.5 3.80 28.0 3.80 

25 1-46 8.35 61.0 3.90 20.0 2.52 
20 0.66 1.75 7.5 4.00 26.1 3.23 
26 1.22 10.60 126-0 7.40 69-5 4.35 
27 1.30 5.40 44.8 3.22 20.4 3-58 
16 0.97 2.80 12.7 3.00 14.2 2.73 
16 1.14 3.95 21.9 3.05 14.7 2.80 
12 1.03 2.96 13.0 2.80 11.8 2.55 
9 1.18 4.62 40.5 3.33 24.7 4.10 

10 1.90 10.00 68.5 2.76 10-0 2.16 
15 1.18 3.92 17.3 2.85 10.5 2.22 

crossing p2 P4 P6 p & f p i  p6/14 p6fi%' 

All stations 

J = -l&zj 1-17 5-10 38.4 3-57 21.9 3.09 
CfT/CPP 0.06 0-31 0.73 0.12 0.50 0.05 

Excluding starred stations 

3 = G f  1.03 3.34 19.1 3.14 16-5 2.93 
0-04 0.14 0.42 0.02 0.10 0.02 

Gaussian values 3 15 2.89 
(f-T,"l(JP 

(= 5fJ3) 

TABLE 1. Some integral moments of c 7  In the specification of the stations, the first number refers 
to the plume, the second to the downstream location and the letters U or L to upper or lower 
reading levels. (See the text.) The data from starred stations was considered less reliable than 
from the others either because the plume was too thin to permit reasonable accuracy or because 
the number of crossings was small. 

P(z) = c" y2C(x, y) dy. 
J - W  

The form of C(x ,y )  at each station was approximately a Gaussian function of y 
(Sullivan 1971). Figure 1 shows how C(x, 0) decreases as L(x) increases. Note that in 
figure 1 a tilde is used, as it will be throughout this paper, to denote the value of any 
experimentally determined function f ( x ,  y) on y = 0. Thus 

[NO graph showing the variation of L(x) with x is given because conditions, while 
steady during each experiment, varied greatly from day to day. In  these circumstances 
no verification of Richardson's law was expected or obtained. Values of x, ranging 
from 140 m to 500 m, were measured and are given in Sullivan (1971).] 

The fluctuation of concentration in each crossing ci(x,  y) was obtained by 
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Y 
N 

F I G U F ~  3. The solid line is (>(x, Y ) / c a ) ,  the dashed line is 0-49Y-0.36 and the 
dash-dotted line is exp ( -  +Y2). 

Y2 

FIGURE 4. A demonstration that (Lc2) (-), (LC) (-.-) and (ca /ca )  (----) are all 
proportional to exp ( - + Ya)  for large enough Y .  

- N  
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FIGURE 5. A demonstration that (LT)  (-), (LC)  (-.-) and (c2/cz) (----) all behave like 
power laws for the smallest values of P observed. 

FIGURE 6. The variation of &(a, Y )  with Y for each of the 12 stations. 

and F(x, y) was determined for each station by 
- n 

cZ(x,y) = n-1 c ct(x,y). (2.6) 
i= l  

Figure 2 plots F(z, Y ) / s ( z )  against Y for each of the 12 stations, where 

Y = y/L(x). (2.7) 

Table 1 lists some integral moments of 2(z, Y )  together with corresponding values 



90 

0 

-0.5 

P. C. Chatwin and P .  J .  Xullivan 

- 

L 

FIGURE 7 .  The variation of R(x, I’) with Y for each of the 12 stations. 

6i Y 6 -‘n 0.5 

FIGURE 8. The dash-dotted line is ( Q ) ,  and the solid line is the ‘typical’ curve Q1( Y )  (see table 2). 
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FIGURE 9. The long-dashed line is (R), the solid line is the ‘typical’ curve R,( Y )  (see table 
the short-dashed line is cos (1.6Y) exp ( -  0.579Yz) and the dash-dotted line is cos (1.8 
x exp ( -0.414Y2). 

8 

n=O 
Q1(Y) = E A ,  YZne-*’ (with A ,  = 1) 

(i) Qi(O.1 )  = (Q(2, 0.1)); 
(ii) Q1( Y,) = Q1( Y,) = 0, where Y, and U, are the average values of the two zeros of Q in figure 6;  
(iii) Q;( Y,) = Qi(Y4) = 0, where Y, and Y, are the average values of the positions of the minima 

(iv) Ql(Y,) = a and Q1(Y4) = /I, where a and p are the averages of the minima and maxima 

(v) c Q1( Y )  d Y  = 0 [see equation (3.15)]. 

and maxima respectively in figure 6 ; 

respectively in figure 6; 

5 

n=O 
R,( Y )  = B,  YZne-zYa (with B, = I )  

(i) R,(0.1) = ( R ( q  0.1)); 
(ii) R,( Y,) = 0, where Yl is the average value of the zeros of R in figure 7 ;  
(iii) R;( Y,) = 0, where Y, is the average value of the position of the minima in figure 7 ; 
(iv) Rl(Y,) = a, where a is the average of the minima in figure 7 ; 

(v) [El( I’) d Y  = 0 [see (3.15)]. 

TABLE 2. The forms of the ‘typical’ curves Ql( Y )  and R,( Y ) ,  and the specific 
properties satisfied by them. 

from a Gaussian curve, and some measures of their variability. Figure 3 shows how 
(c2(x, Y ) /&x) )  varies with Y ,  where the angle brackets denote, as they will through- 
out this paper, an average over all 12 stations. Figure 3 also contains a comparison of 
(cT(x, Y ) / & x ) )  with two simple functions, obtained in the ways shown on figures 4 and 
5 respectively. 
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C 
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1.4 1 .s ' 1.6 

In A' 

FIGURE 10. (a )  The Fourier transforms of (&) and Q1: the long-dashed line is Y ( K )  and the solid 
line is Y l ( K ) ,  both defined in (2.10); the short-dashed line is 0.70 exp { - 0.78(K- 1.8)2) and the 
dash-dotted line is 0.78 exp { - 1.17(K- 1+3)2}. ( b )  shows that Y ( K )  = 1.19K-9 for K 2 3.5. 

The records of ci(x, Y )  were then used to determine two other statistical functions 
Q(x, Y )  and R(x,  Y )  defined for each station by 

m 

-m 
Q(x, Y )  = 1 c(x, Y')c(x, Y + Y')dY' /S_s, 2(x, Y ' )  dY', 

N 

R(x,  Y )  = c(x, 0) c(x, Y)/c? 

The formsofQ and Rfor each ofthe 12 stations areshowninfigures6 and7respectively, 
while (Q) and (R) are shown in figures 8 and 9. Also shown in the latter figures are 
'typical' functions Q1( Y )  and R,( Y )  obtained by fitting curves so that they satisfied 
properties characteristic of the separate curves in figures 6 and 7. Details are given in 
table 2. The reason for believing that Q1( Y )  and R,( Y )  may give truer pictures than 
(Q) and (R) is that the latter contain the unwanted effect of unknown errors in the 
measured values of L(x). Not only are there unavoidable (though presumably unbiased) 
statistical errors indicated by an error bar in figure 1, but also the possibility that the 
measured values of L(x)  are consistently too high because the plume is not traversed 
exactly a t  right angles to its instantaneous axis. These errors, particularly important 
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at large values of Y ,  could explain all the scatter in the separate curves in figures 6 and 
7, and lead to curves of (Q) and (R) in figures 8 and 9 that are too smeared. The 
technique used to obtain Q1 and R, attempts to avoid this smearing while retaining 
the prominent features of the separate curves. Figure 10 (a) shows the Fourier trans- 
forms of (&) and Q1 defined, since Q is even from (2.8), by 

Y ( K )  = jom(Q(z, Y))cos(KY)dY, Y, (K)  = Q,(Y)cos(KY)dY. (2.10) 
/o* 

Figure 10(b) shows that Y ( K )  is proportional to K-8 for K 2 3.5. 

3. A theoretical framework 
Consider one realization of the dispersion, and choose as origin the point on the 

instantaneous centre-line a t  the section where measurements are taken. Let T (x, t )  
be the fluid velocity relative to the velocity of this (randomly) moving origin. The 
equation governing F(x, t )  is then 

a r p t  + v. (rr) = Kv2r. (3.1) 

Express Y and l' in terms of their ensemble means (denoted by overbars) and 
fluctuations as follows: 

r = U(x) + u(x, t ) ,  F = C(x) + G(X, t), where 3 = 0, 2: = 0. (3.2) 

The notation in (3.2) explicitly indicates that U and C are independent of time because 
the turbulence is stationary and because the contaminant is injected a t  a constant 
rate. Substitution of (3.2) into (3.1) leads, in the normal way, to the following equations 
for C and c: 

v.  (uc+E) = KV'C; (3.3) 

The equation forg,  which is also independent of time, is obtained from (3.4) by multi- 
plying by 2c and taking the ensemble mean. After rearranging it becomes 

Except for using the steadiness of C a n d 2  these equations are quite general. But it is 
now time to use the special features of the experimental situation to simplify them. 
With x measured along the instantaneous centre-line, y measured horizontally and 
normal to this line, and z measured vertically, U = ( U ,  0 ,  0 ) ,  where U is the mean 
current, independent oft. Since the vertical diffusion of the dye is limited by the 
thermocline, as explained in 5 2, it will be supposed that no mean values depend on z or, 
equivalently, that all ensemble means appearing from now on can be regarded as 
averages of the previous ensemble means over the vertical. Also the length scale of 
variations of C a n d 2  in the streamwise direction is much greater than that in the 
direction across the plume so that boundary-layer approximations can be made, 
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typified by neglecting a(u, c2)/ax in comparison with 8(uu c2)/ay. Hence (3.3) and 
- ___ 

(3.5) can be approximated by 
ac a - a2c 
ax ay aY2 

u-+- (U,C) = K- 

and 

An immediate consequence of (3.6) is that, for all x, 
Q) [ C d y = M ,  

(3.7) 

J -Q) 

where M is a constant such that M U  is the steady rate of emission of contaminant per 
unit depth. I n  the analysis of the experiments M was, without loss of generality, taken 
to be 1 [see equation (2.1)]. 

The dispersion of a plume of marked Jluid particles (K  = 0) 

It is valuable, as a preliminary, to examine some consequences of (3.6) and (3.7) when 
K = 0. Putting K = 0 in (3.7) and integrating over all y gives 

on using (3.6) with K = 0. Thus, for all x ,  

where M is defined in (3.8) and Lo is a constant length determined entirely by the 
initial conditions and of the same order as the diameter of the tube injecting the 
Contaminant.? 

Since conditions a t  the source are the same in each realization c(0, y)  = 0 ,  and thus 
c2(0, y) = 0. Hence for sufficiently small x ,  the integral of s i n  (3.9) is small compared 
with the integral of C2. But this state of affairs reverses as x increases, for eventually 
the magnitude of C is of order M I L  (as shown in figure 1 for the experiments analysed 
in this paper). Thus eventually 

- 

f m  

J C2dycc M2/L, 
-Q) 

(3.10) 

and this becomes negligible. Hence eventually the integral of 2 dominates the left- 
hand side of equation (3.9).  When this happens the only possibility is that the magni- 
tude o f 2  is of order JP/LL, in most o f  the plume; if also the distribution of 2, like 
that of C, is self-similar in most of the plume, then 

(3.11) 

where Yis defined in ( 2 . 7 ) .  This result, a new one, shows that, when the effects of K are 
negligible, the initial conditions influence the statistical properties of c for all x .  It 

t In these experiments L fL, was of order lo2, according to the data at the beginning of $2.  
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follows that theoretical analyses of concentration fluctuations can have no validity 
unless such influence is included. In  particular, it would be meaningless to model the 
source as a point, and there is no justification (even if effects of K are modelled) for 
assuming c2 = ( M 2 / L 2 ) J (  Y), as was done by Csanady (1973, p. 236). 

A consequence of this result is very surprising however. From (3.6) with K = 0, it 
follows that u1/c has the same sign as Y (since aC/ax is negative), that is the transfer 
of C is everywhere outwards from the centre-line. It also follows that &c has order of 
magnitude ( U M L ' I L ) ,  where L' = dL/dx,  so that the production term in (3.7)) 

namely 2u>(aC/ay), has order of magnitude ( UM2L' /L3) .  But, according to (3.11), 

the advection term in (3.7), namely (Ua?/ax), has order of magnitude ( UM2L'/L2Lo). 
The distribution of 3 is therefore determined by a balance between advection and 
transfer whenever (3.1 1) holds, with the production of zeverywhere negligible. As well 
as being novel, this conclusion is difficult to accept since it requires the integral of 2 
over all y to be independent of x. But it is easy to show from (3.7) that it also requires 
that the transfer o f 2 ,  namely q, is everywhere outwards from the centre-line, just 
like the transfer of C. This suggests one possible resolution of the difficulty,t which is 
that the 2 which is transferred outwards is produced in a small central region, to be 
called the core. Within the core, the production of CTmust be comparable to its 
advection and transfer, and this requires the magnitude of 2 in the core to be much 
greater than in (3.11). The thickness of the core has t>o tend to  zero as x tends to  in- 
finity so that the integral of 2 over the core is small compared with the integral over 
the bulk of the plume where (3.11) holds. 

For the case of a diffusing finite cloud a result analogous to  (3.11) holds, andleads to a 
similar difficulty about the production of ?? It was shown by Chatwin & Sullivan 
(1979a) that a core-bulk structure, analogous to that described above, is the correct 
resolution of this difficulty when the velocity field is a pure straining motion. Other 
arguments, essentially geometrical, show that this structure also exists with some 
other velocity fields. But whether such a structure exists in all casesis an unsolved, but 
important, problem. 

T h e  effects of molecular diffusion 

One effect of turbulence is to tend to distort volume elements into thin sheets or long 
cylinders. Consider a volume element containing marked fluid. The distortion causes 
the maximum gradient of concentration within the element, and its surface area, to 
increase with time on the average. Hence the smoothing effect of K on the statistical 
properties of I' also increases with time (which is equivalent to distance downstream 
from the source for a steady plume). Batchelor (19526, 1959) argued that eventually 
there is a balance between the competing effects of advection and molecular diffusion 
which prevents the minimum dimensions of the sheets or cylinders into which volume 
elements are distorted becoming less than a length of order ( K ~ V / € ) ~ ,  the conduction 
cut-off length. Batchelor's conclusion was confirmed for the case of an initial sphere of 
marked fluid being distorted by a pure straining motion by Chatwin &Sullivan ( 1979 a ) .  

t Another possible resolution, suggested by a referee, may hold in certain circumstances. This 
is that essentially all production of cz takes place so near the source that, contrary to the assump- 
tions made above, C and zare  not of order M I L  and M2/LLo.  

- 

- 
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In  the experiments analysed in this paper Lo > 1 0 0 0 ( ~ ~ ~ / ~ ) 4 ,  so the effect of K will 
not become significant until some distance downstream from the source (Chatwin & 
Sullivan 1 9 7 9 ~ ) .  But for large enough x ,  the effect is profound. In  particular it is easy 
to show from (3.7) that, when K =# 0, 

in contrast with (3.9). Thus 

l im(Jm s a y )  = 0, 
X - + W  --m 

(3.12) 

and not M2/Lo,  its value when K = 0. Eventually, therefore, the magnitude of c2must 
be less by an order of magnitude than M2/LLo,  the value given in (3.11) for K = 0. It is 
not yet known how K affects 2 more precisely. Bu t  speculative arguments, already 
used in the analogous situation for a finite cloud by Chatwin & Sullivan (1979a), 
suggest that there are non-dimensional numbers A and n so that, sufficiently far 
downstream. 

(3.13) 

The arguments, based partly on the behaviour of a cloud in pure straining motion, 
suggest that n is between 1 and 2, and is likely to be nearer 2. 

In the absence of K ,  the value of F i n  the bulk of the plume is determined by a 
balance between advection and transfer outwards. Earlier it was suggested that this 
transfer is fed by production in a small core region surrounding Y = 0 in which the 
magnitude of 2 is much greater than in the bulk. If this description is correct i t  follows 
(Chatwin & Sullivan 1 9 7 9 ~ )  that the direct effect of K o n 2  is essentially confined to the 
core, and that this effect is transferred outwards to the bulk, thereby indirectty 
decreasing the magnitude of c2there in the way described (tentatively) in (3.13). But 
it is difficult to see why the shape of t h e 3  against Y curve, that is the function J in 
(3.11), should be noticeably affected by K. 

Although this paper is concerned with fluctuations, it  is necessary to note that mass 
conservation requires that C is of order M / L  in the bulk of the plume, irrespective of 
whether K has an important effect. This is confirmed by figure 1 (since is a bulk 
value, as explained before equation (2.4)). 

The functions Q and R 
When equation (3.1) is integrated over all y and averaged over the vertical, there 
results 

where it is not necessary to show explicitly the averaging over z since, as explained 
earlier, only spreading in the horizontal direction is considered to be important. To a 
first approximation the dominant term in this equation is the first, so that 

J --(D 
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This is a mathematical statement of the hypothesis commonly made in analysing 
dispersing plumes, namely that changes with time at a fixed point occur predomi- 
nantly as the result of advection with the mean stream. Here with a steady source, f is 
equal to the constant M defined in (3.8). But, using (3.8) and the decomposition of l? 
into mean and fluctuation, it now follows that for each instant 

c(5 ,  y) dy w 0. (3.14) 

[For a finite cloud the integral of c over all space is exactly zero as shown in Chatwin 
& Sullivan (1979a).] From (3.14) it follows immediately that 

1;- Q(5, Y )  dY = 0, /ImR(. .  Y ) d Y  w 0, (3.15) 

where Q and R are defined in (2.8) and (2.9) respectively. 

In particular it is shown there that Q has the remarkable property 
Further discussion of the properties of Q is contained in Chatwin & Sullivan (1979 b) .  

j:m Y2Q(x, Y ) d Y  w 0, (3.16) 

independently of whether K is important or, indeed, whether the contaminant is 
active or passive. This result, unlike (3.15), does not hold in absolute diffusion. 

4. The interpretation of the experimental results 
Experiments designed to measure the statistical properties of concentration 

fluctuations require, ideally, more realizations than those designed to measure the 
ensemble mean concentration. Because experimental errors are inevitably larger, this 
is even more true in natural environments than in laboratories. Furthermore, relative 
diffusion experiments in a plume are more difficult than absolute diffusion experiments 
because of uncertainty about whether the plume is being traversed exactly normal to 
its instantaneous axis. Perhaps such considerations explain the very few pub- 
lished analyses of both measured statistical properties of concentration fluctuations 
and relative diffusion experiments. For the reasons given in 5 1, such neglect is highly 
unsatisfactory. It is hoped, therefore, that the results presented in this paper, relatively 
crude though they are, will stimulate more detailed experiments on these topics, so 
often unjustifiably ignored. 

The results have been presented in a way which avoids as far as possible the use of 
the measured values of L (although these have to be used to determine Y ) .  Values of L 
are uncertain principally because the correct direction for each plume crossing had to 
be estimated by eye. Thus all measured values of 2, Q and R are normalized by divi- 
sion by their measured values a t  Y = 0 so that, unfortunately, the resulting graphs 
give no information about the magnitudes of these quantities. It is important to stress 
once more that the measured values are in effect averages over a length scale of about 
4 m, so the experimental results do not directly exemplify structure on a scale smaller 
than this. Obviously therefore they cannot provide direct evidence about a possible 
core near Y = 0,  described in 5 3. Since one property of the core is that the magnitude 
of 3 (and of C) within it is much greater than in the bulk of the plume, a tilde is used 
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in the way explained in connexion with (2.4) to denote measured values a t  Y = 0, SO 

that these will not be confused with real values. 

_ N  

The distribution of 7 
Figure 2 shows that there is a large amount of noise in the curves of c2/c2, due princi- 
pally to the small number of realizations. Nevertheless, the values of the normalized 
integral moments given in table 1 do appear to be approximately independent of the 
sampling station, particularly for that subset of the stations that was considered to 
give the most reliable data. Accordingly it was supposed that the data were consistent 
with Fhaving a self-similar form; this confirms the conjecture made by Murthy 6 
Csanady (1971) on the basis of experiments a t  only four stations. Figure 3 shows the 
curve of {c2/c2) obtained by combining the data from all twelve stations, and assuming 
self-similarity . 

From this curve it is evident that {c2/cz)  is Gaussian for Y 2 1.5. This is consistent 
with the closeness of the normalized integral moments given in table 1 with those that 
would be given by a Gaussian form. For smaller values of Y ,  which contribute rela- 
tively little to the moments, the form of {cz/c2) is no longer Gaussian. This is particu- 
larly evident in figure 4, in which there is also a slight indication that the form of C is no 
longer Gaussian for small Y .  In  figure 5, the data are replotted in a way which empha- 
sizes the changes in behaviour of C a n d 3  for small Y ,  and suggests that the Gaussian 
forms become power laws. Because of the noisiness of the results, very little signifi- 
cance can be attached to the precise values given in figure 5 for the indices in these 
power laws. But the change in behaviour of Ffor  Y 5 1-5 is very noticeable. Such 
change is not predicted by the empirical theory of Csanady (1973, pp. 233-242). That 
theory makes the assumption that the turbulent transfers of both C a n d 3  can be 
described using eddy diffusivities, the same for each process. As pointed out following 
(3.1 l),  the work also unjustifiably supposes that the magnitude of ?is of order M2/L2 ,  
and one unfortunate prediction based on these assumptions is that 2 is negative for 
Y 2 2.5. On the other hand, a marked change in behaviour would be expected if the 
core-bulk structure proposed in 5 3 existed, for then there would be a transition region 
between the core and the bulk within which the&stuff produced in the core was being 
transferred outwards by eddies with length scales of order L. Whether this is the 
correct explanation cannot be decided, of course, without much more detailed experi- 
ments achieving very good spatial resolution. 

- N  

_ N  

- N  

The functions Q and R 
Since e(x, Y )  is not a stationary random function of Y ,  means like 

depend on Yl and Yz separately. Generally it is not therefore possible to use the many 
techniques developed for stationary random functions and described in $11 of Monin 
& Yaglom (1975). But in the present non-stationary process, expressions involving 
means of products of fluctuations still appear in the hierarchy of equations for the 
moments of I?, and the simplest of these have clear physical significance. The func- 
tions Q and R defined in (2.8) and (2.9) are especially simple since they depend only on 
two variables, unlike (4.1) which depends on three variables. Furthermore, Q has 

4x2 c(x, yz)  (4.1) 
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direct relation to the distance-neighbour function (Sullivan 1975), and, exceptionally 
for non-stationary processes, does behave like a correlation function since its Fourier 
transform must be non-negative everywhere. 

For these reasons the data were used to evaluate Q and R for each sampling station 
with the results shown in figures 6 and 7 respectively. It is remarkable that these 
curves are much less noisy than the curves of 2 in figure 2 .  Furthermore the same 
prominent features are observed in the curves of Q and R at  each station. Each curve 
of Q and R has a sensibly zero integral as predicted in (3.15). There seems no reason to 
doubt that both Q and R have essentially self-similar forms in the bulk of the plume. 
The straightforward averages (Q) and (R) are shown in figures 8 and 9 respectively, 
together with the ‘typical’ curves Q1 and R,, which, for the reasons given in $ 2 ,  may 
represent the true curves more closely than (Q) and (R). 

In forming R the centre of the plume is singled out, whereas Q is a measure of struc- 
ture throughout the plume with all parts being given the same weight. It is therefore 
very surprising that for Y 5 2.5 the curves of (Q) and (R) are almost the same, and it 
seems that this can occur only if the predominant contribution for Y 5 2.5 to the 
integrand in Q comes from pairs of points of which one is near the centre-line, i.e. from 
those points which determine R. The similarity between (Q) and (R) for Y 5 2.5 
seems therefore to require the magnitudes of the fluctuations near the centre of the 
cloud to be substantially higher than elsewhere. Whether they must be as large as 
required by a core-bulk structure cannot be decided by the present experiments be- 
cause of the limited spatial resolution. But it seems unlikely that such close similarity 
would be obtained with magnitudes that decreased a t  a rate uniform over the whole 
plume, as conventionally assumed. Whatever the explanation, the negative values of 
Q and R occur because of transport of material from near the centre out to regions near 
the periphery by eddies of length scales of order L. Such transport results in changes in 
c near the centre being of opposite sign to those near the periphery. It is interesting to 
recall that transport by such eddies was the mechanism suggested earlier for the 
marked change in behaviour of (c2/c2) near Y = 1.5, and to note that this is also the 
value of Y near which the negative values of Q and R have a maximum. Furthermore, 
this mechanism causes changes in c near Y = 1.5 and near Y = -- 1.5 to have the same 
sign; this would explain the shallow maximum of Q near Y = 3. 

The Fourier transforms of (Q) and Q1, defined as Y ( K )  and Y l ( K )  in (2.10), are 
shown in figure 10. For the reasons given earlier, Y ( K )  is a spectrum in the strict 
sense used in describing stationary random processes. The curves, of course, reflect the 
general features noted above; in particular Y(0) = Yl(0) = 0 (corresponding to (Q) 
having zero integral) and both Y and Y ,  are well fitted by Gaussian curves near their 
central peaks (corresponding to the Gaussian behaviour noted in the discussion of the 
graphs of 3). However, the main reason for including the figure is to show the K-4 
behaviour of Y for K 2 3.5. Such behaviour was predicted by Obukhoff (1949) and 
brrsin (195 I) ,  but only for statistically homogeneous fields of concentration. Perhaps, 
therefore, the observed behaviour indicates small scale homogeneity of the plume 
despite the fact that its structure is, by mass conservation, fundamentally inhomo- 
geneous. Noting that Y , ( K )  does not have the K-Q behaviour,t Professor A . M .  

t Although this is not surprising since &,( Y )  was fitted to  &( Y )  on the basis of large scale 
features (see table 2), without regard to the small scale features responsible for the K-g be- 
haviour of Y ( K ) .  

- N  

4-2 
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Yaglom has suggested to us that an alternative explanation of the behaviour of 
Y ( K )  for K 2 3-5 could be the inaccuracy of the data. Clearly there is need for further 
investigation. 

The effects of molecular diflwion 

Arguments at the end of 3 3 suggest that the observed self-similarity in the bulk of the 
plume exists whether or not the effects of K are important. But the same arguments 
predict that if K is important it will strongly affect the magnitudes of all statistical 
properties except C (which is of order ML-1 by mass conservation). Here an attempt 
is made to examine this point, although no firm conclusions can be reached because of 
the extensive noise on the data. 

Least squares lines of best fit to the data showed that the rates of decrease of ce(x) 

and /: s ( x ,  y) dy with L ( x )  could be approximated by 

P. C .  Chatwin and P. J .  Sullivan 

N 

Z ( x )  cc L--2.6, Som F(X, y) aycc L-1.5. 

If K were unimportant these indices would be - 1 and 0 respectively, according to 
(3.11), so that it can be asserted definitely that K is important in these experiments. 
Furthermore the observed self-similarity requires that in the bulk of the plume 

- N 

c2(z, y) w c2(z) J (  Y )  = &z) J(y /L(z ) ) ,  

from which (ignoring the contribution from any core) 

Although little reliance can be placed on the exact values of the indices in (4.2), the 
fact that they differ by approximately 1 is consistent with (4.3). [An indication of the 
possible sizes of the errors in (4.2) was obtained by calculating the line of best fit to 
& ~ ) / { C ( X ) } ~ ,  which gave this quantity proportional to L--Oe8, whereas it is propor- 
tional to L-2.6/L-2 w L-o.6 according to (4.2) and figure 1.1 

From (4.21 it follows that 
\ I  "s" c"(x,y)dycc L'L-2.5. 

ax -" (4.4) 

Although no direct measurements of x were made for the reason given earlier, L'cc L) 
since the spreading of the plume is determined by eddies of the relative velocity field 
lying in the inertial subrange. Thus (4.4) becomes 

"1" - cyx ,  y) aycc L--2.2, 
ax -" (4.5) 

approximately. According to (3.13) the left-hand side of (4.5) is proportional to L4, 
where n lies between 1 and 2, and is probably closer to 2. In  view of the tentative 
nature both of the theory and the experimental result (4.5), little significance can be 
attached to the apparent discrepancy. 
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A note on absolute and relative diffusion 

Absolute diffusion experiments in natural environments are, perhaps, more difficult 
to do than relative diffusion experiments because it is virtually impossible to measwe 
properly those ensemble means that depend on the slow, largescale, energy-containing 
eddies (and, it was argued in $1, such experiments would also be less useful). In 
natural environments (unlike some laboratory flows) these eddies are not self- 
similar and would not, in general, permit the self-similar structure consistent with the 
present relative diffusion experiments. A more specific difference is that it can be 
shown from figure 8 that the integral of Y2(Q) over all Y is sensibly zero, consistent 
with the theoretical result (3.16).  This integral is not zero in absolute diffusion (Chat- 
win & Sullivan 19793). 

We are grateful to Professor G .  K. Batchelor and to Professor A. M. Yaglom for 
their very valuable comments on the first draft of this paper. Paul J. Sullivan acknow- 
ledges the financial support of the National Research Council of Canada during the 
period when this work was carried out. 
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